
SAWA: An Assistant for Higher-Level Fusion
and Situation Awareness

Christopher J. Matheus*1, Mieczyslaw M. Kokar2,1, Kenneth Baclawski2,1, Jerzy A. Letkowski3,1

,, Catherine Call1,
Michael Hinman4, John Salerno4, Douglas Boulware4

1Versatile Information Systems, Inc., Framingham, MA, USA 01701
2Northeastern University, 360 Huntington Avenue, Boston, MA, USA 02115

3Western New England College, 1215 Wilbraham Road, Springfield, MA, USA 01119
4Air Force Research Laboratory, 525 Brooks Road, Rome, NY, USA 13441

ABSTRACT
Situation awareness involves the identification and monitoring of relationships among level-one objects. This problem
in general is intractable (i.e., there is a potentially infinite number of relations that could be tracked) and thus requires
additional constraints and guidance defined by the user if there is to be any hope of creating practical situation awareness
systems. This paper describes a Situation Awareness Assistant (SAWA) that facilitates the development of user-defined
domain knowledge in the form of formal ontologies and rule sets and then permits the application of the domain
knowledge to the monitoring of relevant relations as they occur in evolving situations. SAWA includes tools for
developing ontologies in OWL and rules in SWRL and provides runtime components for collecting event data, storing
and querying the data, monitoring relevant relations and viewing the results through a graphical user interface. An
application of SAWA to a scenario from the domain of supply logistics is also presented.

Keywords: situation awareness, level-two fusion, ontologies, formal reasoning, OWL, SWRL

1. INTRODUCTION
The essence of situation awareness lies in the monitoring of various entities, physical and abstract, as well as various
relations among the entities. Since the properties of relations, unlike the properties of objects, are not directly
measurable, one needs to have some background knowledge (such as ontologies and rules) to specify how to derive the
existence and meaning of particular relations. For instance, in the domain of supply logistics, relations like “suppliable”
or “projected undersupply within 2 days” need to be systematically specified. Typical relations in a military context
would include relations such as “unit aggregation” and “composition of the force”. The number of potentially relevant
relation types is practically unlimited. This presents a great challenge to developers of general-purpose situation
awareness systems since it essentially means that such systems must have the potential to track any possible relation. In
other words, the relation determination algorithms must be generic, rather than handcrafted for each special kind of
relation. Furthermore, in order to derive a specific relation one often needs to access a number of data sources and then
combine (fuse) their inputs. One way to address these challenges is to use generic reasoning tools, such as those based on
the principles employed by automated theorem provers. However, to take advantage of this approach all information
must be available in a formally defined knowledge base.

At Versatile Information Systems, Inc., we are developing a collection of flexible ontology-based information fusion
tools needed for identifying and tracking user-defineddefined[MMK1] relations. These tools collectively make up our
Situation Awareness Assistant (SAWA). The purpose of SAWA is to permit the offline development of problem specific
domain knowledge and then apply it at runtime to the fusion and analysis of level-one data. Domain knowledge is
captured in SAWA using formal ontologies, portions of which are used to represent the incoming stream of level-one
event data. The user controls the system situation monitoring requirements by specifying “standing relations”, i.e., high-
level relations or queries that the system is to monitor. SAWA provides a flexible query and monitoring language that
can be used to request information about the current situation, predicted situations, and request notifications of current or
potential future emergency conditions. In this paper we describe the structure and capabilities of SAWA and show its
use on examples from the supply logistics domain. In particular, we show how to develop an appropriate ontology and

* cmatheus@vistology.com; phone 1 508 788-5088; fax 1 508 788-9944; http://www.vistology.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
SAWA: An Assistant for Higher-Level Fusion and Situation Awareness

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Versatile Information Systems Inc,5 Mountainview
Drive,Framingham,MA,01701

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

associated rules, how SAWA collects and processes incoming events and how it communicates with the user. We also
discuss the advantages of the approach as compared with other solutions that we are aware of.

2. GENERAL APPROACH
We view situation awareness as a fusion problem involving the identification and monitoring of higher-order relations
among level-one objects. As mentioned in the introduction, practical solutions to this problem require user-defined
constraints, which we usually identified with a corpus of knowledge specific to a domain of interest, otherwise known as
domain knowledge. The use of domain knowledge requires a form of representation and a means for processing or
reasoning about the knowledge representations. Rather than developing ad hoc representations we advocate the
leveraging of existing standards. We also believe strongly in the value of formal representations that can be used in
conjunction with generic yet formal reasoning systems. Our approach to domain knowledge representation, which we
will describe shortly, is thus premised on use of standards-based formal representations.

Even with appropriate domain knowledge the number of possible relations definable within the domain knowledge
constraints can remain intractable. To further constrain a situation we believe it is necessary to know something about
the user’s specific goals. By knowing more specifically what the user is looking for, automated systems can focus
attention on just those events and candidate relations that are relevant. Our process for relevance reasoning has been
reported elsewhere1 and will not be explained in detail in this paper. We will summarize, however, by saying that
relevance reasoning takes a standing relation (i.e. a goal) from the user, identifies the portion of the domain knowledge
that is relevant to the standing relation, finds the attributes in the domain knowledge that must be grounded in input
events and uses these attributes to identify what types of objects and which of their attributes need to be monitored in the
event stream. With this mechanism, the large number of objects and attributes in a situation can be pared down to a
more manageable stream of data in which only a comparatively small number of relevant relations must be monitored.

2.1. Ontology Representation in OWL
In our current efforts we have been exploring the use of recent developments for the Semantic Web. In particular we
have chosen to use the Web Ontology Language OWL2 for defining ontologies that serve as the basis for data and
knowledge representation within our situation awareness systems. The advantages of using OWL includes the fact that it
is defined by a formal set of semantics and that there are a growing number of automated systems to formally process
OWL documents, including editors, consistency checkers and reasoning engines3.

OWL was designed to capture the classes, properties and restrictions pertinent to a specific domain. As such, OWL can
capture basic class hierarchies, properties among classes and data and simple constraints on those properties and classes.
OWL, however, cannot capture all types of knowledge relevant to a given domain. In particular, it does not provide a
way to represent arbitrarily complex implications, in which knowledge of the existence of a collection of facts (X1,
X2…Xn) implies the truth of some other information (i.e., X1 � X2�…Xn →Y). For example, there is no way in OWL to
define the relationship of “uncle(X,Y)” which requires knowing that X is male, X has a sibling Z, and Z has a child Y.
The joining of collections of interrelated facts into implication rules as illustrated in this example is very common when
defining relationships important to domains involving situation awareness. We therefore need the ability to define
portions of our domain knowledge using a rule language, and for this purpose we have selected the Semantic Web Rule
Language, SWRL4.

2.2. Rule Representation in SWRL
SWRL is built on top of OWL and, like OWL, has a formally defined semantics, making it a natural choice for use in our
situation awareness applications. SWRL does, however, have some shortcomings that make it less than ideal. Because it
was officially introduced as a draft recommendation in just the spring of 2004, it is relatively new and is still evolving;
this means there are few tools and applications for use with SWRL and it remains a moving target which may undergo
radical changes that will introduce inconsistencies for early adopters. Furthermore, SWRL predicates are limited to
binary arity. While it is possible to represent concepts dependent on higher-arity relations using SWRL, the process of
doing so significantly complicates the resulting rules, making them difficult to read and maintain. Still, the advantages
of SWRL justify the exploration of its use for situation awareness, which can be seen as one of the objectives of our
current work. Our results do not as of yet provide sufficient evidence on which to fully judge SWRL’s future potential in
this area.

2.3. SAW Core Ontology
We are interested in building systems for situation awareness that are generic in nature. That is to say that the systems
should be applicable to a wide variety of problem domains simply through the redefinition of the domain knowledge that
they use. For this approach to work, some core concepts need to be established that will be used as the basis for the
development of specific domain knowledge ontologies and rule sets. For this reason we have developed a SAW Core
Ontology that serves as the representational foundation of all domain knowledge that is built on top of it. We have
reported on this core ontology in earlier papers5 and will not describe it in detail here. A simplified version of the
ontology is shown in Figure 1 with the key concepts being use of objects that have attributes with specific values being
defined by external events that occur over time; in addition, relations combine pairs of objects with truth values defined
over time by the firing of rules that define the relations.

Figure 1: SAW Core Ontology. This ontology serves as the basis for all domain specific ontologies and rule sets. According to the
ontology a Situation consists of Objects and Relations and a Goal (standing relation). Objects have AttributeTuples that are associated
with specific Attributes and a collection of AttributeValues defined according to ExternalEvents. Relations are realized through
RelationTuples that connect pairs of Objects with RelationValues defining by the firing of Rules.

3. SAWA HIGH-LEVEL ARCHITECTURE
The SAWA High-Level Architecture has two aspects as shown in Figure 2: a set of offline tools for Knowledge
Management and a Runtime System of components for applying the domain knowledge to the monitoring of evolving
situations. The knowledge management tools include an ontology editor, an ontology consistency checker and a rule
editor. The runtime system consists of a Situation Management Component (SMC), an Event Management Component
(EMC), a Relation Monitor Agent (RMA), a Triples DataBase (TDB) and a Graphical User Interface (GUI).

Figure 2: SAWA High-Level Architecture. On the left side of the diagram is the Knowledge Management suite of tools that is used
to develop the domain knowledge (dk) that serves as input to the Runtime System, shown on the right hand side. The user interacts
with the system through the GUI by issuing standing relations (goals) and queries. Events from the outside world come into the
runtime system and are processed for redistribution to other components by the Event Management Component (EMC).

4. SAWA KNOWLEDGE MANAGEMENT
Knowledge Management in SAWA is handled by a loosely coupled suite of tools for developing and maintaining OWL
ontologies and SWRL rule sets.

2.4. Ontology Editor
The OWL language is based in RDF, which has an XML-based representation. As such, any text or XML editor could
be used to develop OWL ontologies. The manual coding of OWL is, however, tedious and prone to error, making
specialized editors highly desirable. There are a number of editors available for OWL6 but the most widely used is
Protégé7. Protégé is a general-purpose ontology management system developed long before OWL but for which OWL
plug-ins have been developed. Using Protégé with the basic OWL plug-in permits the use of Protégé’s frame-based
editor to construct OWL classes, properties and restrictions among them as well as to develop annotations for OWL
ontologies. This approach is adequate but not as convenient as a graphical editor that allows the visual display and
manipulation of the relations between objects and properties. Fortunately there is a plug-in for Protégé called ezOWL
that provides a graphical editor on top of the basic OWL-plugin. All of the ontologies depicted in this paper are
screenshots taken from ezOWL. EzOWL has its limitations (for example it does not cleanly display more than two
properties between two classes) and does not always produce correct OWL code, but it is currently the best available
visual editor for OWL and does a satisfactory job, provided the resulting code is checked for consistency.

2.5. Consistency Checker
Developing an accurate and consistent ontology is not easy, particularly as the complexity of the domain increases. For
all but the most trivial problems it is imperative that newly constructed ontologies be automatically validated for logical
consistency; this is also invaluable when combining multiple ontologies that may individually be consistent but are
collectively incompatible. It has been the authors’ experience that seldom is the first design of an ontology complete and
consistent, and the use of consistency checking tools has saved tremendous amounts of development time. SAWA
includes ConsVISor8, an OWL/RDF consistency checker, in its suite of knowledge management tools. ConsVISor is
both a standalone Java application and a free Web Service provided by Versatile Information Systems, Inc. at
http://www.vistology.com/consvisor. Figure 3 shows a snapshot of the Web Service version of ConsVISor.

ConsVISor’s purpose is to analyze OWL and RDF documents looking for symptoms of semantic inconsistencies. Not
only does it detect outright semantic violations, it also identifies situations where logical implications have not been fully

specified in a document. For example, if an ontology places a minimum cardinality constraint on a property for a
specific class and an instance of that class is created without having the minimum number of property values, an
informative message is provided as shown in Figure 3. Emphasis is placed on providing highly informative feedback
about detected symptoms so as to aid the correction of underlying errors by the human user. ConsVISor’s output
however is based on an OWL-based Symptom Ontology9 and as such can produce symptom reports in OWL that can be
automatically processed by other OWL-cognizant programs.

Figure 3: ConsVISor. This screenshot shows sample HTML-based output from the ConsVISor Web Service available at
http://www.vistology.com/consvisor. Whereas this HTML output is intended to ease processing by human users, ConsVISor’s output
may also be received as an OWL document for automated processing by other programs that understand OWL.

2.6. Rule Editor
SWRL rules in their XML representation are syntactically and (frequently) semantically difficult to read and write. It
was therefore decided that SAWA needed an easy to use editor to assist in the construction and maintenance of SWRL
rules. With SWRL being so new, there were no SWRL editors available and so we decided to implement one, which we
are calling RuleVISor. A screenshot of RuleVISor being used on a rule set for the Supply Logistics scenario described

in Section 6 is shown in Figure 4. The rules are displayed along the top left hand side of the editor in a directory style
layout for easy selection and high-level scanning. The rule that is currently being edited appears in two forms in the
right-hand section of the editor. At the top of this section is the display of the contents of the rule head and body in
either an easy to read atomic form, which is shown in the screenshot, or as raw SWRL code (not shown). Below this
display is the section where editing of the rule takes place, including the optional naming of each rule. This section is
split into a portion at the top for editing the head followed by a portion for editing the body. Within either of these the
user has the option of adding or deleting binary atoms, atomic atoms, instances, data value ranges and built-in functions
simply by clicking on the appropriate icons. Each clause in a rule head or body appears in a three row region that
provides the name of the atom, the terms it operates over and possibly other constraints such as term type restrictions.
The values of the terms can either be typed in by the user or dragged from other areas of the editor. The primary source
for dragged items is the Ontology Tree that appears in the lower left hand corner.

The Ontology Tree displays the contents of the ontologies upon which a rule set is to be built. Of most interest here are
the Classes and Properties of the ontology, which are used to populate the term slots of atoms used in the rule heads and
bodies. Class and Property names may be dragged to any text entry box in the editor but they will only be accepted by
the box if the value being dragged matches the type that the box expects. This form of primitive type checking
represents the beginning of a much more sophisticated policy for consistency checking based on ConsVISor that is
planned for a future version of RuleVISor.

RuleVISor is currently in alpha testing but has been used extensively for rule development purposes by the authors and
has proven to be a great time saver over the manual editing of SWRL rules. Perhaps the biggest advantage afforded by
RuleVISor is the ability to deal with rule definition at a conceptual level that abstracts out the syntactic complexities of
the XML-based representation of SWRL. RuleVISor also assists with the generation of Jess rules as it has a built in
translator that understands some of the more subtle complexities of converting from SWRL to Jess.

Figure 4: RuleVISor. This screenshot of the RuleVISor SWRL editor shows its use on a set of rules used by the Supply Logistics
scenario described in Section 6.

5. SAWA RUNTIME SYSTEM
The SAWA Runtime System, also called the SAWA Engine, is depicted in Figure 5 along with the communication
channels between its sub-components. SAWA is implemented in Java, includes Jess as the basis for its reasoning
functions and uses our proprietary RDF/OWL/XSD parser. The SAWA Engine consists of the following sub-
components: the Situation Management Component (SMC) which is the system’s central controller, the Event
Management Component (EMC) which processes all incoming events, the Relation Monitoring Agent (RMA) which
monitors relevant events for the status of relations occurring in the evolving situation, the Triples DataBase (TDB) which
maintains a historical record of all situation events and permits the processing of queries, and the Graphical User
Interface (GUI) which handles all user interaction with the system. The function of each of these components is
described further in the subsections that follow.

Figure 5: SAWA Runtime System. The communication links between the various SAWA components are shown with solid lines
representing permanent connections and dotted lines indicating transient connections.

2.7. Situation Management Component
The Situation Management Component (SMC) is the central controller for SAWA. It interacts with the GUI to provide
options to the user and to accept the user’s commands to start, stop and query situations. In addition, it serves as the
communication channel between the GUI and the TDB and RMA. The SMC initializes the monitoring of situations by
instructing the EMC to start listening to specific event streams and informs the RMA, TDB and GUI how to connect to
the EMC to receive their appropriate streams of processed events. The SMC is also responsible for performing relevance
reasoning and for passing the appropriate set of relevant rules to the RMA and the set of relevant objects and attributes to
the EMC.

2.8. Event Management Component
The Event Management Component (EMC) receives streams of raw event data and converts them into appropriate
streams of events for the GUI, RMA and TDB. Each of these components receives a specific type of event stream: the
RMA only receives relevant events encoded as Jess-formatted triples; the TDB receives all events in the form of OWL
triples; the GUI receives relevant events in the form of object-attribute instances. The raw input streams are expected to
be annotated using an event ontology with references to objects defined in the core ontology and the appropriate domain
ontology. The event ontology currently being used in SAWA is shown in Figure 6. This event ontology is known only
to the EMC which converts all event information into appropriate structures for the other components; the isolation of
the other components from the event ontology was done so as to permit the use of other event ontologies dependent upon
the source of the event streams (which at this time is a simulator of fused level-one object data).

Figure 6: Event Ontology. Simple ontology used to represent incoming events for processing by the EMC. Each Event describes one
or more Objects each having one or more Attributes for which a value and certainty measure are defined.

2.9. Relation Monitoring Agent
The Relation Monitoring Agent (RMA) performs the task of monitoring the stream of relevant events and detecting the
truth value of relevant relations that might exist between objects occurring in the evolving situation. The RMA performs
this task using the relevant rules defined by the domain knowledge in conjunction with the standing relation. These
relevant rules are processed in the forward-chaining Rete network of a Jess inference engine. As events come in, they
are processed through the Rete network and as a result may end up firing one or more rules. The firing of a rule results
in the instantiation of a relation that is then reported to the GUI via the SMC. At the moment all rule firings result in
relations that have an associated certainty rating of 1.0 (i.e., 100%). We are working on a new implementation of the
reasoning engine that will incorporate uncertainty reasoning and will thus afford the detection of relations having
incomplete certainties.

2.10. Triples Database
In RDF and OWL all information is represented in the form of triples. Each triple represents a predicate that relates a
subject to an object. For example, to state that S2 is a SupplyStation requires a triple of the form: S2 rdf:type
SupplyStation.1 More complex knowledge structure can be represented using collections of interrelated triples (see
XXX[MMK2]). The triples representing the domain knowledge, user input and the incoming events all need to be
maintained in a way that they can be readily processed. In SAWA this is accomplished through the Triples DataBase
(TDB).

The TDB’s primary purpose is to maintain an accurate history of all events so that they can be queried by the user at any
time. It is currently developed on top of Jess and makes use of Jess’ built-in query capabilities to implement an engine
for OQL: OWL Query language10. The TDB also supports “what-if” queries in which a set of hypothetical facts are
asserted, a query is run to produce what-if results, and the hypothetical facts are retracted along with all facts deduced
from them. The TDB accomplishes this what-if capability using the “logical” retraction feature of Jess. While both the
general query mechanism and the what-if query mechanism work as designed, they are quite inefficient and not
particularly suited for new real-time operations. Consequently we are in the process of developing our own inferencing
and query engine optimized for the processing of triples.

2.11. Graphical User Interface
The Graphical User Interface permits the user to define standing relations, execute queries and monitor the current state
of events, objects, attributes and relations. Its use on a Supply Logistics scenario (described in the next section) is
illustrated in Figure 7.

6. A SUPPLY LOGISTICS SCENARIO
SAWA is currently being applied to the domain of supply logistics. A simple scenario based on the concept of supply
lines has been constructed for the purposes of demonstrating the basic system functions. The goal or “standing relation”
for this scenario is to constantly monitor the relation “hasSupplyLine” for all friendly units. A supply line is defined as
the existence of a continuous path of roads under friendly control connecting a unit (e.g., B5, B6, etc.) to a supply station
(e.g., S1). The specific layout for this scenario can be seen in the map display in the GUI screenshot in Figure 7. Roads
connect pairs of regions (their centroids indicated by solid dots). There are six friendly blue units (i.e., B5, B6, B7, B9
and S1), including one supply station (S1), and one unfriendly red unit (R1).

1 For simplicity we are here ignoring the use of namespaces on the subject and object.

Figure 7: The SAWA GUI. The GUI provides the means for specifying the standing relation (i.e., goal), executing queries, and
monitoring the evolution of events, objects, attributes and relations. Objects and attributes are displayed in the Situation Object Table
and also on the Situation Object Map. Relevant relations appear in the Relevant Relations table as well as in the Relevant Relation
Diagram. Clicking on objects on the map or events, objects or relations in the tables brings up a sub window of supplemental
information as shown in the figure for Unit B8. The dials in the upper right hand corner are used for monitoring the performance of
the inferencing engine.

The screenshot in Figure 8 shows the simple supply logistics ontology that goes along with this scenario. Note that all of
the classes in this ontology are implicitly sub classes of the Object class in the SAW Core Ontology described in Section
2.3 – this is necessary for the domain specific ontology to work with the otherwise generic mechanisms of the SAWA
Engine. Note also that this ontology is a gross simplification of what would be expected for a more complete ontology
necessary to support more practical supply logistics scenarios (which the authors are currently working on). This
ontology was created using ezOWL, which produced the screenshot shown in Figure 8 as well as the OWL code used in
the running of the scenario.

The rule set developed for this scenario is partially shown in the screenshot of RuleVISor in Figure 4. These rules define
that a unit hasSupplyLine if the unit is in a region that isSuppliable. A region isSuppliable if it hasSupplyStation and is
underFriendlyControl or if it is connected to another region by a Passable road and that other region isSuppliable. A
region is underFriendlyControl if it contains a friendly unit. A region hasSupplyStation if the region contains an object
and that object is a supply station (note that this rather obvious sounding rule is an implication that cannot be readily
captured in OWL alone).

Figure 8: Simple Supply Logistics Ontology. This simple ontology captures just enough information needed for reasoning about
supply lines, which serves as the standing relation in our supply logistics scenario. Each of the classes represented in the ontology is
actually a subclass of the Object class defined in the SAW Core Ontology shown in Figure 1.

To simulate the running of the scenario several snapshots where developed as OWL annotations to define the state of the
world at sequential time slices. In each time slice one of the units was moved around in such a manner as to create
changes in the set of relations that would hold true. These snapshots where then presented to a running SAWA
application in which the user specified the standing relation to be hasSupplyLine as applied to all friendly units. The
system correctly detected the standing relations that held true at each time slice and reported these back to the GUI which
displayed them for the user; the GUI screenshot in Figure 7 shows the display after a couple of time steps.

7. CONCLUSION
This paper described the Situation Awareness Assistant, SAWA. SAWA is designed to monitor the evolution of higher-
order relations within a situation using formal and generic reasoning techniques for level-two fusion. The system is
grounded in the use of the formal languages of OWL and SWRL, which permit the representation of ontologies and
rules. For a specific application of SAWA, a domain theory consisting of a domain specific ontology and a
corresponding set of rules are first constructed or reused from a previous application. A standing relation, or goal, is
then defined by the user, which is used to determine the relevant portion of the domain knowledge for the current
objectives as well as to identify the relevant object and object-attributes that the system needs to monitor in the event
stream. As relevant events are detected they are passed on to the relation-monitoring agent, which analyzes them for the
possible occurrence of higher-order relations. As higher-order relations are detected they are passed onto the GUI,
which displays them in both tabular and graphical forms for the user along with other data pertaining to the events,
objects and their attributes. The GUI also provides the capability for querying the system’s triple database using basic
OQL queries or with “what-if” queries that can produce hypothetical situations against which a query is run. A scenario
from the domain of supply logistics was briefly described.

REFERENCES
1 Relevance Reasoning paper, 2003.
2 OWL, 2003.
3 OWL Tools, 2003.
4 SWRL, 2004.
5 A Core Ontology for Situation Awareness, FUSION03, 2003.
6 Ontology Tools Eval Paper, 2003.
7 Protégé.
8 ConsVISor, 2003. http://www.vistology.com/consvisor.
9 A Symptom Ontology for Semantic Web Documents, ISWC04, 2004.
10 OQL: OWL Query Language, 2003.

